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We discuss the conceptual differences between the broad histogram (BHM) and
reweighting methods in general, and particularly the so-called multicanonical
(MUCA) approaches. The main difference is that BHM is based on microcanoni-
cal, fixed-energy averages which depend only on the good statistics taken inside
each energy level. The detailed distribution of visits among different energy
levels, determined by the particular dynamic rule one adopts, is irrelevant.
Contrary to MUCA, where the results are extracted from the dynamic rule
itself, within BHM any microcanonical dynamics could be adopted. As a
numerical test, we have used both BHM and MUCA in order to obtain the
spectral energy degeneracy of the Ising model in 4_4_4 and 32_32 lattices,
for which exact results are known. We discuss why BHM gives more accurate
results than MUCA, even using the same Markovian sequence of states. In addi-
tion, such an advantage increases for larger systems.
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I. INTRODUCTION

Development of tools for optimization of computer simulations is a field
of great interest and activity. Cluster updating algorithms, (1�3) probability
reweighting procedures(4�6) and, more recently, methods(7�9) that obtain
directly the spectral degeneracy g(E ) are a few examples of very successful
approaches (for reviews of these methods see, for instance refs. 10�12 and
references therein). The multicanonical (MUCA) and Broad Histogram
(BHM) methods belong to the former category. The Entropic Sampling
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Method (ESM) (8) was proven to be an equivalent formulation of
MUCA.(13) From the knowledge of g(E ), these methods allow us to obtain
any thermodynamical quantity of interest for the system under study, as
the canonical average

(Q) T=
�E g(E )(Q(E )) exp(&E�T )

�E g(E ) exp(&E�T )
(1)

of some macroscopic quantity Q (magnetization, density, correlations,
etc.). Both sums run over all allowed energies (for continuous spectra,
they must be replaced by integrals), T is the fixed temperature, and the
Boltzmann constant was set to unity. The degeneracy function g(E ) simply
counts the number of states with energy E (which, must be interpreted as
a density within a narrow window dE, for continuous spectra). Also,

(Q(E ))=
�S[E] QS

g(E )
(2)

is the microcanonical, fixed-E average of Q. The sum runs uniformly over
all states S with energy E (or, again, within the small window dE, for
continuous spectra). Note that neither g(E ) nor (Q(E )) depend on the
particular environment the system is actually interacting with, for instance
the canonical heat bath represented by the exponential Boltzmann factors
in Eq. (1). Thus, these methods go far beyond the canonical ensemble: once
g(E ) and (Q(E )) were already determined for a given system, one can
study its behavior under different environments, or different ensembles,
using the same g(E ) and (Q(E )). Accordingly, as an additional advan-
tage, only one computer run is enough to evaluate the quantities of interest
in a large range of temperatures and other parameters.

MUCA was introduced in 1991 by Berg and Neuhaus.(7) The basic
idea of the method is to sample microconfigurations performing a biased
random walk (RW) in the configuration space leading to another unbiased
random walk (i.e., uniform distribution) along the energy axis. Thus, the
visiting probability for each energy level E is inversely proportional to
g(E ). By tuning the acceptance probability of movements in order to get
a uniform distribution of visits along the energy axis, one is able to get
g(E ) at the end. MUCA has been proven to be very useful and efficient to
obtain results in many different problems, such as first order phase transi-
tions, confinement�deconfinement phase transition in SU(3) gauge theory,
relaxation paths, (14) conformal studied of peptides, helix-coil transition and
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protein folding, evolutionary problems (15) and to study phase equilibrium
in binary lipid bilayer(16) (for reviews of the method see ref. 17).

BHM was introduced three years ago by de Oliveira et al.(18) It is
based on an exact relation between the spectral degeneracy, g(E ), and the
microcanonical averages of some special macroscopic quantities. A remarkable
feature of BHM is its generality, since these macroscopic quantities can be
averaged by different procedures.(18�29) Because it is not restricted to a rule
like a biased random walk, more adequate dynamics can be adopted for
each different application. BHM has been applied to a variety of magnetic
systems such as the 2D and 3D Ising Models (also with external fields, next
nearest neighbor interactions), 2D and 3D XY and Heisenberg Models,
Ising Spin Glass(18�29) with accurate results in a very efficient way.
Theoretically, the method can be applied to any statistical system.(21)

Another distinguishing feature of BHM is that its numerical results do not
rely on the number of visits H(E ) to each energy level, a quantity which
is updated by one unit for each new visited state. On the contrary, BHM is
based on microcanonical averages of macroscopic quantities. Each visited
state contributes with a macroscopic upgrade for the measured quantities.
Thus the numerical accuracy is much better than that obtained within all
other methods, better yet for larger and larger systems, considering the
same computer effort.

Besides the practical points described above, the most important feature
of BHM is the following conceptual one. All reweighting methods(4�9) depend
on the final distribution of visits H(E ) along the energy axis. Histogram
methods(4�6) adopt a canonical dynamics, getting HT0

(E ) for some fixed
temperature T0 ; a new distribution HT (E ) is then analytically inferred for
another (not simulated) temperature T. Following the same reasoning, one
can also obtain g(E ).(5) Multicanonical approaches, (7�9) on the other hand
tune appropriate dynamics in order to obtain a flat distribution H(E ). In
both cases, the actually implemented transition probabilities from energy
level E to another value E$ are crucial. In other words, in both cases the
results depend on the comparison of H(E ) with the neighboring H(E$). All
those reweighting methods are, thus, extremely sensitive to the particular
dynamic rule adopted during the computer run, i.e., to the prescribed
transition probabilities from E to E$.

BHM is not a reweighting method. It does not perform any reweight-
ing on the distribution of visits H(E ). It needs only the knowledge of the
microcanonical, fixed-E averages of some particular macroscopic quan-
tities. The possible transitions from the current energy E to other values are
exactly taken into account within these quantities (see Section III), instead
of performing a numerical measurement of the corresponding probabilities
during the computer run. Thus, the only important role played by the
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actually implemented dynamic rule is to provide a good statistics within
each energy level, separately: the relative weight of H(E ) as compared to
H(E$), i.e., the relative visitation frequency for different energy levels, is
completely irrelevant. One can even decide to sample more states inside a
particularly important region of the energy axis (near the critical point, for
instance), (23) instead of a flat distribution. In short, any dynamic rule can
be adopted within BHM, the only constraint is to sample with uniform
probability the various states belonging to the same energy level not the
relative probabilities concerning different energies.

In this paper we have used the formulation of MUCA given by Lee(8)

called Entropic Sampling, which, from now on, we call ESM. We present
a comparison between ESM�MUCA and BHM, focusing on both accuracy
and the use of CPU time. We choose to start our study with the same
example used in the original ESM paper by Lee:(8) the 4_4_4 simple
cubic Ising model, for which the exact energy spectrum is known.(30) Our
results show that BHM gives more accurate results than ESM�MUCA with
the same number of Monte Carlo steps. Despite the fact that one Monte
Carlo step in BHM takes more CPU time, in measuring further macro-
scopic averages, the overall CPU time is smaller for the same accuracy, at
least for this model. Also, BHM can be applied to larger lattices without
the problems faced by ESM�MUCA, as we show in our simulations of the
same model in a 32_32 lattice.

This paper is structured as follows: in Section II and III we review the
implementation of ESM�MUCA and BHM (including a detailed descrip-
tion of the distinct dynamics adopted in this work). In Section IV our
numerical tests are presented and discussed. Conclusions are in Section V.

II. THE MULTICANONICAL METHOD

The idea of the Multicanonical method is to obtain the spectral
degeneracy of a given system using a biased RW in the configuration
space.(7, 8) The transition probability between two states Xold and Xnew is
given by

{(Xold , Xnew)=e&[S(E(Xnew))&S(E(Xold))]=
g(Eold)
g(Enew)

(3)

where S(E(X ))=ln g(E ) is the entropy and E(X ) is the energy of state X.
The transitional probability (3) satisfies a detailed balance equation and
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leads to a distribution of probabilities where a state is sampled with prob-
ability B 1�g(E ). The successive visitations along the energy axis follow a
uniform distribution. However, g(E ) is not known, a priori. In order to
obtain g(E ), Lee(8) proposes the following algorithm:

Step 1. Start with S(E )=0 for all states;

Step 2. Perform a few unbiased RW steps in the configuration space
and store T (E ), the number of tossed movements to each energy E (in this
stage, T (E )=H(E ) because all movements are accepted);

Step 3. Update S(E ) according to

S(E )={S(E )+ln T (E ),
S(E ),

if T (E ){0
otherwise

(4)

Step 4. Perform a much longer MC run using the transitional prob-
ability given by Eq. (3), storing T (E ).

Step 5. Repeat 3 and 4. This is considered one iteration.

This implementation is known to be quite sensitive to the lengths of
the MC runs in steps 2 and 4. In Section IV we study, in two examples,
how the accuracy depends on the total number and size of each iteration.

III. THE BROAD HISTOGRAM METHOD

BHM(18) enables us to directly calculate the energy spectrum g(E ),
without any need for a particular choice of the dynamics to be used.(19)

Many distinct dynamic rules could be used, and indeed some were already
tested.(18�29)

Within BHM, the energy degeneracy is calculated through the following
steps (alternatively, other quantities could replace E ):

Step 1. Choice of a reversible protocol of allowed movements in
the state space. Reversible means simply that for each allowed movement
Xold � Xnew the back movement Xnew � Xold is also allowed. It is important
to note that these movements are virtual, since they are not actually per-
formed. In this work we take the flips of one single spin as the protocol of
movements;

Step 2. For a configuration X, to compute N(X, 2E ), the number of
possible movements that change the energy E(X ) by a given amount 2E.
Therefore g(E )(N(E, 2E )) is the total number of movements between
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energy levels E and E+2E, according to the definition (2) of microcanonical
averages;

Step 3. Since the total number of possible movements from level
E+2E to level E is equal to the total number of possible movements from
level E to level E+2E (step 1, above), we can write down the equation(18)

g(E )(N(E, 2E ))= g(E+2E )(N(E+2E, &2E )) (5)

The relation above is exact for any statistical model and energy spec-
trum.(21) It can be rewritten as

ln g(E+2E )&ln g(E )=ln
(N(E, 2E ))

(N(E+2E, &2E ))
(6)

This equation can be easily solved for all values of E, after (N(E, 2E )) is
obtained by any procedure, determining g(E ) along the whole energy axis.
In cases where 2E can assume more than one value, Eq. (5) becomes an
overdetermined system of equations. However, the spectral degeneracy can
be obtained without need of solving all equations simultaneously, since the
spectral degeneracy is the same for all values of 2E.

The exact Broad Histogram relation (5) is independent of the proce-
dure by which (N(E, 2E )) is obtained.(19�24) Therefore, virtually any pro-
cedure can be adopted in this task, for instance, an unbiased energy
RW, (18) a microcanonical simulation, (22) or a mixture of both.(21, 23) Even
the juxtaposition of histograms obtained through canonical simulations at
different temperatures, a completely unphysical procedure, could be used,
as in some of the results presented in ref. 19, and explicitly used in ref. 27
where BHM is reformulated under a transition matrix(31) approach. Here,
we are going to introduce an alternative procedure, referred as Entropic
Sampling-based Dynamics for BHM (ESDYN, hereafter). First, one imple-
ments ESM, as described in Section II, in order to perform the visitation
in the configuration space. Additionally, for each visited state X, we store
the values of N(X, 2E ) cumulatively into E-histograms. Therefore, at the
end we have two choices for the determination of the spectral degeneracy,
either by using the entropy accumulated through T (E ) (that is the traditional
ESM�MUCA) or by using the accumulated (N(E, 2E )) and the BHM
relation, Eq. (5). Because of this special implementation, we can guarantee
that exactly the same states are visited for both methods. Hence, the even-
tual difference in the performances reported in this work must be credited
to the methods themselves and not to purely statistical factors.

The dynamic rule originally used in order to test BHM(18) prescribes
an acceptance probability p=(N(E+2E, &2E ))�(N(E, 2E )). Both the
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numerator and the denominator are read from the currently accumulated
histograms, and thus p varies during the simulation. Wang(24) has proposed
a new approach: instead of using the dynamically updated values of
(N(E, 2E )) as in ref. 18, the transitional probabilities follow a previously
obtained (from a canonical simulation, for example) distribution (Nfixed(E,
2E )) , kept fixed during the simulation. An alternative and simpler deriva-
tion of Wang's dynamics can be done by using the BHM relation (5) itself.
From this, we readily obtain that Wang's dynamics is the same as using
the transitional probability p= gfixed(E )�gfixed(E+2E ) with approximated
values gfixed(E ) kept fixed during the simulation. We refer to this dynamics
as approximated Wang's dynamics, since (Nfixed(E, 2E )) (or gfixed(E )) is
actually only an approximation of the real (N(E, 2E )) (or g(E )). We will
use the results obtained by ESM or BHM with ESDYN as inputs to the
approximate Wang's dynamics. These dynamics will be called AWANG1
and AWANG2, respectively.

For comparison, we also implemented a dynamics that uses the ESM
probabilities taken from the exact values of g(E ). It is worth noticing that,
as pointed out in the previous paragraph, this is equivalent to Wang's
proposal with exact values for (Nfixed(E, 2E )). We refer to this dynamics as
WANG. Its purpose is only to test the accuracies of the other approaches,
once one does not know the exact g(E ) a priori, in real implementations.

IV. NUMERICAL TESTS

We start our comparison with the smallest system, since it is also pre-
sent in the ESM original paper by Lee.(8) The partition function for the
4_4_4 simple cubic Ising model is exactly known.(30) It is given by the
polynomial function.

Z(;)= :
96

n=0

C(n) un (7)

where u=exp (&4;), ;=1�T, T is the temperature. The energy spectrum
is written in terms of the coefficients C(n) as g(E )= g(2n)=C(n) for n=0
to n=96. For this model, only the first 49 coefficients are necessary by
symmetry. The other 48 coefficients are mirror images of the first ones. Our
results will be expressed in terms of S(E )=ln g(E ).

In order to compare the entropies as obtained by both ESM and
BHM, we normalize the entropy such that g(96)=1, i.e., S(96)=0. This
point corresponds to the center of the energy spectrum, or, alternatively, to
infinite temperature. Of course, the error relative to the exact value
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Fig. 1. Entropies (normalized by its exact values) for the 4_4_4 Ising ferromagnet,
obtained by ESM�MUCA and BHM for 100 iterations of 106 Monte Carlo steps, each. The
inset shows a detailed view of the first fourth of the whole spectrum. ESM�MUCA gives the
largest errors. AWANG1 and AWANG2 dynamics also give worse results than BHM with
both ES or WANG dynamics.

vanishes for E=96. In Fig. 1, we compare the normalized (with respect to
its exact value) entropy as function of E obtained by ESM and BHM (with
four different dynamics). In AWANG1 and AWANG2 dynamics we use as
(Nfixed(E, 2E )) the results obtained by ESM and BHM with ESDYN,
respectively. BHM with the entropic sampling dynamics or using the exact
relation proposed by Wang present errors within the same order of
magnitude, while pure ESM gives the worst results, as clearly seen in the
inset. It is also clear the AWANG1 and AWANG2 results are worse than
BHM with ESDYN.

The methods can be better compared by the ratio of their relative
errors rather than their absolute values. We define the relative errors in the
entropy, for a given energy E, as

=(E )= }S(E )&S(E )exact

S(E )exact } (8)
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Fig. 2. Ratio between the relative errors for BHM and the ESM�MUCA ones. The horizon-
tal lines are the mean relative errors. BHM is on average more than ten times more accurate
then ESM�MUCA, for this number of iterations. The exact Wang's dynamics is, as expected,
slightly more accurate than ESDYN (as shown in the inset) once it uses the exact g(E ) as
input in order to get g(E ) as output. AWANG1 and AWANG2 give the worst results among
the four distinct dynamics presently used in order to test BHM (see text).

In Fig. 2 we show the ratio between the BHM relative errors
(obtained by ESDYN, AWANG1 and AWANG2 dynamics) and the ESM
ones. The inset shows the ratio between the errors from BHM with WANG
and the ESM ones. In its worst performance, the error obtained by BHM
with ESDYN is roughly one third of the one obtained by ESM. BHM with
Wang's exact dynamics gives slightly better results once it uses the exact
g(E ) as input in order to get g(E ) as output. BHM with ESDYN gives on
average results 11 times more accurate than ESM, for this number of itera-
tions. However, BHM with the AWANG1 and AWANG2 dynamics give
relatively poorer results. Therefore, we have shown that the ES dynamics
is a powerful approach (among other possibilities(18�27)) to obtain with
great accuracy the microcanonical averages (N(E, 2E )) needed by BHM.
Let us stress that the results for g(E ) obtained with AWANG2 are worse
than the input they use, namely the values of g(E ) obtained as output of
BHM with ESDYN. In order to obtain good results with Wang's
dynamics, we need a pretty good estimative of g(E ) as input, and not only
some crude estimation as claimed in ref. 24.
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Fig. 3. Time evolution of the mean error for BHM with ESDYN (a) and ESM�MUCA (b).
In both cases, exactly the same averaging states are visited: thus, the differences are due to the
methods themselves, not to statistics. As described in the next, the entropic sampling dynamics
is quite sensitive to the number of Monte Carlo steps between each iteration, that correspond
to an update of the entropy. Here, we present the results for N=10, 100, 1000 iterations, that
means 105, 104 and 103 Monte Carlo steps, respectively, between each iteration. The more
Monte Carlo steps, the smaller is the error for the entropic sampling. Conversely BHM does
not seem to depend on the computational strategy adopted. Moreover, the errors seem to sta-
bilize after some steps, in the ESM case. On the contrary, for BHM, to get a better accuracy
is a simple matter of increasing the computer time, once the errors decay as t&1�2. The results
are averaged over ten realizations.

In Fig. 3, we show the time evolution of the mean error as a function
of the number of Monte Carlo steps (MCS). One iteration in ESM
corresponds to perform many RW steps, according to Eq. (3), storing the
number of visits at each energy and, after this fixed number of RW steps,
to update the entropy, according to Eq. (4). As we pointed out before, the
ESM performance is quite sensitive to the choice of the number of RW
steps before each entropy update. For a fixed number of MCS (106), we
plot the time evolution for both ESM and BHM, but with different number
of iterations. As one can see in Fig. 3, the best results for ESM correspond
to the smaller number of iterations since, in this case, more RW steps are
performed and, consequently, we have better statistics for the determina-
tion of the entropy.

It is worth noticing that the ESM�MUCA errors seem to stabilize after
a few iterations. We believe that this effect occurs because the number of
visits to each energy is not sufficient to provide a good statistics in deter-
mining the entropy. The only way to improve the accuracy in the spectral
degeneracy is to perform more RW steps between each entropy update (it
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does not increase the CPU time if the total number of MCS is kept con-
stant). Conversely, for BHM the error decreases monotonically because
macroscopic quantities are stored, leading to a good statistics even if some
states are not frequently visited. After the very first steps, the errors decay
as t&1�2, as expected. It is also remarkable the accuracy when using BHM:
we reach the same accuracy of the best performance of ESM�MUCA, by
performing roughly 30 times less MCS.

Of course, accuracy is not the only important factor concerning the
efficiency of a computational method. BHM with ES dynamics has one
additional step compared to the traditional implementation of ESM,
namely the storage of the macroscopic quantities N(X, 2E ). So, we need to
know the cost of this additional step. In Table I, we show the CPU time
(in seconds) spent in both implementations on a 433 MHz DEC Alpha, in
order to obtain the results shown in Fig. 1. For direct comparison, we also
present the CPU time relative to the ESM CPU time. All dynamics tested
within BHM takes roughly the same CPU time. As one can see, BHM uses
twice more CPU time than ESM. However, for the same number of steps,
and the best strategy for ESM, BHM is at least 10 times more accurate. If
we consider accuracy and CPU use, we argue that BHM is more efficient
than ESM.

Up to now, we have tested both approaches in a very small lattice.
Nevertheless, we can show that BHM is even more efficient for larger
systems, as expected due to the macroscopic character of the quantities
N(X, 2E ). For Ld Ising spins on a lattice, for instance, even restricting the
allowed movements only to single-spin flips, the total number of movements

Table I. CPU Time for Each Method and Dynamicsa

CPU

Method Dynamics Time(s)
t

tESM

1
(=(E )�=(EESM))

ESM ESDYN 4181 1 1

BHM AWANG1 9360 2.24 2.94
AWANG2 9772 2.33 4.75
ESDYN 8754 2.09 10.68

a ESM�MUCA is at least twice faster than BHM with the various dynamics used in this work.
However, BHM is more than 10 times more accurate than the multicanonical approach.
For AWANG1 dynamics, one must add the previous ESM time spent in determining
(N fixed(E, 2E )) , i.e., 13541s. Analogously, AWANG2 spent a total time of 18526s. The
simulations were carried out on a 433MHz DEC Alpha.
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Fig. 4. Time evolution of the mean error for BHM with ESDYN (a) and ESM�MUCA (b)
for the 32_32 square lattice Ising Model. Now we consider 107 MC steps. Again we present
the result for N=100, 1000 iterations, that means 105 and 104 Monte Carlo steps, respec-
tively, between each iteration. The results are averaged over ten realizations. The ratio
between the accuracies of BHM and ESM�MUCA is even higher for large systems.

starting from X is just Ld. Thus, being a finite fraction of them, N(X, 2E )
is a macroscopic quantity (this is true along the whole energy axis, except
at the ground state where g(E) presents a macroscopic jump relative to the
neighboring energy levels). In Fig. 4 we present results for the time evolu-
tion of the mean error for a 32_32 square lattice Ising model (a lattice
that is 16 times larger than the one in the previous results). The exact solu-
tion for this system is also know.(32) Here, the accuracy of BHM is two
orders of magnitude higher than that of ESM. Again the errors decrease as
t&1�2 for BHM with ESDYN, while the ESM mean errors seem to stabilize.
In summary, BHM with ESDYN can obtain accurate results for lattices
much larger than the ones considered as limit for ESM.

V. CONCLUSIONS

The Multicanonical(7, 8) and the Broad Histogram(18) methods are
completely distinct from canonical Monte Carlo methods, once they focus
on the determination of the energy spectrum degeneracy g(E ). This quan-
tity is independent of thermodynamic concepts and depends only on the
particular system under study. It does not depend on the interactions of the
system with the environment. Thus, once one has determined g(E ), the
effects of different environments can be studied using always the same data
for g(E). Different temperatures, for instance, can be studied without need
of a new computer run for each T.
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The goal of this paper is to discuss the conceptual differences
between Multicanonical and Broad Histogram frameworks, and to com-
pare both methods concerning accuracy and speed. We obtained the
energy spectrum of the Ising model in 4_4_4 and 32_32 lattices, for
which the exact results are known and, therefore, provide a good basis
for comparison. Our findings show that a combination of the Broad
Histogram method and the Entropic Sampling random walk dynamics
(BHM with ESDYN) gives very accurate results and, in addition, it
needs much less Monte Carlo steps to obtain the same accuracy as the
pure Entropic Sampling method. This advantage of the Broad
Histogram method grows with the system size, and it does not present
the limitations of the Multicanonical or Entropic Sampling methods
concerning large systems.

The reason for the better performance is that the BHM(18�29) uses the
microcanonical averages (N(E, 2E )) (18) of the macroscopic quantity
N(X, 2E )��the number of potential movements which could be done start-
ing from the current state X, leading to an energy variation of 2E. In this
way, each new visited state contributes with a macroscopic value for the
averages one measures during the computer simulation. Being macroscopic
quantities, the larger the system, the more accurate are the results for these
averages. Conversely, Histogram(4�6) and Multicanonical(7�9) approaches
rely exclusively on H(E), the number of visits to each energy. Therefore,
each new averaging state contributes with only one more count to the
averages being measured, i.e., H(E ) � H(E )+1, independent of the system
size.

Under a conceptual point of view, BHM is also completely distinct
from the other methods which are based on the final distribution of visits
H(E ). Alternatively, it is based on the determination of microcanonical,
fixed-E averages (N(E, 2E )), (18) concerning each energy level separately.
Thus, the relative frequency of visitation between distinct energy levels,
which is sensitive to the particular dynamic rule one adopts, i.e. the com-
parison between H(E ) and H(E$), does not matter. The only requirement
for the dynamics is to provide a uniform sampling probability for the states
belonging to the same energy level. The transition probabilities from one
level to the others are irrelevant.
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